metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.20D14, (C2×Dic7)⋊6D4, (C2×C28).302D4, (C22×D4).8D7, C14.73C22≀C2, C22.283(D4×D7), C2.25(C28⋊2D4), (C22×C14).110D4, (C22×C4).152D14, C2.6(C24⋊D7), C7⋊5(C23.10D4), C23.30(C7⋊D4), C14.130(C4⋊D4), C14.C42⋊45C2, C14.48(C4.4D4), (C23×C14).48C22, C23.384(C22×D7), C2.34(Dic7⋊D4), C2.14(C28.17D4), (C22×C14).367C23, (C22×C28).395C22, C22.106(D4⋊2D7), C14.84(C22.D4), (C22×Dic7).68C22, C2.17(C23.18D14), (D4×C2×C14).12C2, (C2×Dic7⋊C4)⋊43C2, (C2×C14).556(C2×D4), (C2×C4).85(C7⋊D4), (C2×C23.D7)⋊11C2, C22.218(C2×C7⋊D4), (C2×C14).163(C4○D4), SmallGroup(448,756)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.20D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=e14=1, f2=dc=cd, ab=ba, ac=ca, eae-1=ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce-1 >
Subgroups: 884 in 238 conjugacy classes, 65 normal (25 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, C23, C14, C14, C14, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×D4, C22×C14, C22×C14, C22×C14, C23.10D4, Dic7⋊C4, C23.D7, C22×Dic7, C22×Dic7, C22×C28, D4×C14, C23×C14, C14.C42, C2×Dic7⋊C4, C2×C23.D7, D4×C2×C14, C24.20D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C22≀C2, C4⋊D4, C22.D4, C4.4D4, C7⋊D4, C22×D7, C23.10D4, D4×D7, D4⋊2D7, C2×C7⋊D4, C23.18D14, C28.17D4, C28⋊2D4, Dic7⋊D4, C24⋊D7, C24.20D14
(2 52)(4 54)(6 56)(8 44)(10 46)(12 48)(14 50)(16 34)(18 36)(20 38)(22 40)(24 42)(26 30)(28 32)(57 178)(58 143)(59 180)(60 145)(61 182)(62 147)(63 170)(64 149)(65 172)(66 151)(67 174)(68 153)(69 176)(70 141)(71 166)(72 205)(73 168)(74 207)(75 156)(76 209)(77 158)(78 197)(79 160)(80 199)(81 162)(82 201)(83 164)(84 203)(85 142)(86 179)(87 144)(88 181)(89 146)(90 169)(91 148)(92 171)(93 150)(94 173)(95 152)(96 175)(97 154)(98 177)(99 159)(100 198)(101 161)(102 200)(103 163)(104 202)(105 165)(106 204)(107 167)(108 206)(109 155)(110 208)(111 157)(112 210)(114 195)(116 183)(118 185)(120 187)(122 189)(124 191)(126 193)(127 223)(129 211)(131 213)(133 215)(135 217)(137 219)(139 221)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 55)(16 56)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(57 142)(58 143)(59 144)(60 145)(61 146)(62 147)(63 148)(64 149)(65 150)(66 151)(67 152)(68 153)(69 154)(70 141)(71 166)(72 167)(73 168)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)(82 163)(83 164)(84 165)(85 178)(86 179)(87 180)(88 181)(89 182)(90 169)(91 170)(92 171)(93 172)(94 173)(95 174)(96 175)(97 176)(98 177)(99 197)(100 198)(101 199)(102 200)(103 201)(104 202)(105 203)(106 204)(107 205)(108 206)(109 207)(110 208)(111 209)(112 210)(113 134)(114 135)(115 136)(116 137)(117 138)(118 139)(119 140)(120 127)(121 128)(122 129)(123 130)(124 131)(125 132)(126 133)(183 219)(184 220)(185 221)(186 222)(187 223)(188 224)(189 211)(190 212)(191 213)(192 214)(193 215)(194 216)(195 217)(196 218)
(1 132)(2 133)(3 134)(4 135)(5 136)(6 137)(7 138)(8 139)(9 140)(10 127)(11 128)(12 129)(13 130)(14 131)(15 196)(16 183)(17 184)(18 185)(19 186)(20 187)(21 188)(22 189)(23 190)(24 191)(25 192)(26 193)(27 194)(28 195)(29 125)(30 126)(31 113)(32 114)(33 115)(34 116)(35 117)(36 118)(37 119)(38 120)(39 121)(40 122)(41 123)(42 124)(43 220)(44 221)(45 222)(46 223)(47 224)(48 211)(49 212)(50 213)(51 214)(52 215)(53 216)(54 217)(55 218)(56 219)(57 167)(58 168)(59 155)(60 156)(61 157)(62 158)(63 159)(64 160)(65 161)(66 162)(67 163)(68 164)(69 165)(70 166)(71 141)(72 142)(73 143)(74 144)(75 145)(76 146)(77 147)(78 148)(79 149)(80 150)(81 151)(82 152)(83 153)(84 154)(85 205)(86 206)(87 207)(88 208)(89 209)(90 210)(91 197)(92 198)(93 199)(94 200)(95 201)(96 202)(97 203)(98 204)(99 170)(100 171)(101 172)(102 173)(103 174)(104 175)(105 176)(106 177)(107 178)(108 179)(109 180)(110 181)(111 182)(112 169)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 43)(8 44)(9 45)(10 46)(11 47)(12 48)(13 49)(14 50)(15 33)(16 34)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 29)(26 30)(27 31)(28 32)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 106)(72 107)(73 108)(74 109)(75 110)(76 111)(77 112)(78 99)(79 100)(80 101)(81 102)(82 103)(83 104)(84 105)(113 194)(114 195)(115 196)(116 183)(117 184)(118 185)(119 186)(120 187)(121 188)(122 189)(123 190)(124 191)(125 192)(126 193)(127 223)(128 224)(129 211)(130 212)(131 213)(132 214)(133 215)(134 216)(135 217)(136 218)(137 219)(138 220)(139 221)(140 222)(141 177)(142 178)(143 179)(144 180)(145 181)(146 182)(147 169)(148 170)(149 171)(150 172)(151 173)(152 174)(153 175)(154 176)(155 207)(156 208)(157 209)(158 210)(159 197)(160 198)(161 199)(162 200)(163 201)(164 202)(165 203)(166 204)(167 205)(168 206)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 87 214 155)(2 206 215 58)(3 85 216 167)(4 204 217 70)(5 97 218 165)(6 202 219 68)(7 95 220 163)(8 200 221 66)(9 93 222 161)(10 198 223 64)(11 91 224 159)(12 210 211 62)(13 89 212 157)(14 208 213 60)(15 154 115 105)(16 83 116 175)(17 152 117 103)(18 81 118 173)(19 150 119 101)(20 79 120 171)(21 148 121 99)(22 77 122 169)(23 146 123 111)(24 75 124 181)(25 144 125 109)(26 73 126 179)(27 142 113 107)(28 71 114 177)(29 180 192 74)(30 108 193 143)(31 178 194 72)(32 106 195 141)(33 176 196 84)(34 104 183 153)(35 174 184 82)(36 102 185 151)(37 172 186 80)(38 100 187 149)(39 170 188 78)(40 112 189 147)(41 182 190 76)(42 110 191 145)(43 67 138 201)(44 162 139 94)(45 65 140 199)(46 160 127 92)(47 63 128 197)(48 158 129 90)(49 61 130 209)(50 156 131 88)(51 59 132 207)(52 168 133 86)(53 57 134 205)(54 166 135 98)(55 69 136 203)(56 164 137 96)
G:=sub<Sym(224)| (2,52)(4,54)(6,56)(8,44)(10,46)(12,48)(14,50)(16,34)(18,36)(20,38)(22,40)(24,42)(26,30)(28,32)(57,178)(58,143)(59,180)(60,145)(61,182)(62,147)(63,170)(64,149)(65,172)(66,151)(67,174)(68,153)(69,176)(70,141)(71,166)(72,205)(73,168)(74,207)(75,156)(76,209)(77,158)(78,197)(79,160)(80,199)(81,162)(82,201)(83,164)(84,203)(85,142)(86,179)(87,144)(88,181)(89,146)(90,169)(91,148)(92,171)(93,150)(94,173)(95,152)(96,175)(97,154)(98,177)(99,159)(100,198)(101,161)(102,200)(103,163)(104,202)(105,165)(106,204)(107,167)(108,206)(109,155)(110,208)(111,157)(112,210)(114,195)(116,183)(118,185)(120,187)(122,189)(124,191)(126,193)(127,223)(129,211)(131,213)(133,215)(135,217)(137,219)(139,221), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,55)(16,56)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(57,142)(58,143)(59,144)(60,145)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,141)(71,166)(72,167)(73,168)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162)(82,163)(83,164)(84,165)(85,178)(86,179)(87,180)(88,181)(89,182)(90,169)(91,170)(92,171)(93,172)(94,173)(95,174)(96,175)(97,176)(98,177)(99,197)(100,198)(101,199)(102,200)(103,201)(104,202)(105,203)(106,204)(107,205)(108,206)(109,207)(110,208)(111,209)(112,210)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,127)(121,128)(122,129)(123,130)(124,131)(125,132)(126,133)(183,219)(184,220)(185,221)(186,222)(187,223)(188,224)(189,211)(190,212)(191,213)(192,214)(193,215)(194,216)(195,217)(196,218), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,127)(11,128)(12,129)(13,130)(14,131)(15,196)(16,183)(17,184)(18,185)(19,186)(20,187)(21,188)(22,189)(23,190)(24,191)(25,192)(26,193)(27,194)(28,195)(29,125)(30,126)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,119)(38,120)(39,121)(40,122)(41,123)(42,124)(43,220)(44,221)(45,222)(46,223)(47,224)(48,211)(49,212)(50,213)(51,214)(52,215)(53,216)(54,217)(55,218)(56,219)(57,167)(58,168)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,161)(66,162)(67,163)(68,164)(69,165)(70,166)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,205)(86,206)(87,207)(88,208)(89,209)(90,210)(91,197)(92,198)(93,199)(94,200)(95,201)(96,202)(97,203)(98,204)(99,170)(100,171)(101,172)(102,173)(103,174)(104,175)(105,176)(106,177)(107,178)(108,179)(109,180)(110,181)(111,182)(112,169), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,29)(26,30)(27,31)(28,32)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105)(113,194)(114,195)(115,196)(116,183)(117,184)(118,185)(119,186)(120,187)(121,188)(122,189)(123,190)(124,191)(125,192)(126,193)(127,223)(128,224)(129,211)(130,212)(131,213)(132,214)(133,215)(134,216)(135,217)(136,218)(137,219)(138,220)(139,221)(140,222)(141,177)(142,178)(143,179)(144,180)(145,181)(146,182)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)(153,175)(154,176)(155,207)(156,208)(157,209)(158,210)(159,197)(160,198)(161,199)(162,200)(163,201)(164,202)(165,203)(166,204)(167,205)(168,206), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,87,214,155)(2,206,215,58)(3,85,216,167)(4,204,217,70)(5,97,218,165)(6,202,219,68)(7,95,220,163)(8,200,221,66)(9,93,222,161)(10,198,223,64)(11,91,224,159)(12,210,211,62)(13,89,212,157)(14,208,213,60)(15,154,115,105)(16,83,116,175)(17,152,117,103)(18,81,118,173)(19,150,119,101)(20,79,120,171)(21,148,121,99)(22,77,122,169)(23,146,123,111)(24,75,124,181)(25,144,125,109)(26,73,126,179)(27,142,113,107)(28,71,114,177)(29,180,192,74)(30,108,193,143)(31,178,194,72)(32,106,195,141)(33,176,196,84)(34,104,183,153)(35,174,184,82)(36,102,185,151)(37,172,186,80)(38,100,187,149)(39,170,188,78)(40,112,189,147)(41,182,190,76)(42,110,191,145)(43,67,138,201)(44,162,139,94)(45,65,140,199)(46,160,127,92)(47,63,128,197)(48,158,129,90)(49,61,130,209)(50,156,131,88)(51,59,132,207)(52,168,133,86)(53,57,134,205)(54,166,135,98)(55,69,136,203)(56,164,137,96)>;
G:=Group( (2,52)(4,54)(6,56)(8,44)(10,46)(12,48)(14,50)(16,34)(18,36)(20,38)(22,40)(24,42)(26,30)(28,32)(57,178)(58,143)(59,180)(60,145)(61,182)(62,147)(63,170)(64,149)(65,172)(66,151)(67,174)(68,153)(69,176)(70,141)(71,166)(72,205)(73,168)(74,207)(75,156)(76,209)(77,158)(78,197)(79,160)(80,199)(81,162)(82,201)(83,164)(84,203)(85,142)(86,179)(87,144)(88,181)(89,146)(90,169)(91,148)(92,171)(93,150)(94,173)(95,152)(96,175)(97,154)(98,177)(99,159)(100,198)(101,161)(102,200)(103,163)(104,202)(105,165)(106,204)(107,167)(108,206)(109,155)(110,208)(111,157)(112,210)(114,195)(116,183)(118,185)(120,187)(122,189)(124,191)(126,193)(127,223)(129,211)(131,213)(133,215)(135,217)(137,219)(139,221), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,55)(16,56)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(57,142)(58,143)(59,144)(60,145)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,141)(71,166)(72,167)(73,168)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162)(82,163)(83,164)(84,165)(85,178)(86,179)(87,180)(88,181)(89,182)(90,169)(91,170)(92,171)(93,172)(94,173)(95,174)(96,175)(97,176)(98,177)(99,197)(100,198)(101,199)(102,200)(103,201)(104,202)(105,203)(106,204)(107,205)(108,206)(109,207)(110,208)(111,209)(112,210)(113,134)(114,135)(115,136)(116,137)(117,138)(118,139)(119,140)(120,127)(121,128)(122,129)(123,130)(124,131)(125,132)(126,133)(183,219)(184,220)(185,221)(186,222)(187,223)(188,224)(189,211)(190,212)(191,213)(192,214)(193,215)(194,216)(195,217)(196,218), (1,132)(2,133)(3,134)(4,135)(5,136)(6,137)(7,138)(8,139)(9,140)(10,127)(11,128)(12,129)(13,130)(14,131)(15,196)(16,183)(17,184)(18,185)(19,186)(20,187)(21,188)(22,189)(23,190)(24,191)(25,192)(26,193)(27,194)(28,195)(29,125)(30,126)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,119)(38,120)(39,121)(40,122)(41,123)(42,124)(43,220)(44,221)(45,222)(46,223)(47,224)(48,211)(49,212)(50,213)(51,214)(52,215)(53,216)(54,217)(55,218)(56,219)(57,167)(58,168)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,161)(66,162)(67,163)(68,164)(69,165)(70,166)(71,141)(72,142)(73,143)(74,144)(75,145)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,205)(86,206)(87,207)(88,208)(89,209)(90,210)(91,197)(92,198)(93,199)(94,200)(95,201)(96,202)(97,203)(98,204)(99,170)(100,171)(101,172)(102,173)(103,174)(104,175)(105,176)(106,177)(107,178)(108,179)(109,180)(110,181)(111,182)(112,169), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,29)(26,30)(27,31)(28,32)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,106)(72,107)(73,108)(74,109)(75,110)(76,111)(77,112)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105)(113,194)(114,195)(115,196)(116,183)(117,184)(118,185)(119,186)(120,187)(121,188)(122,189)(123,190)(124,191)(125,192)(126,193)(127,223)(128,224)(129,211)(130,212)(131,213)(132,214)(133,215)(134,216)(135,217)(136,218)(137,219)(138,220)(139,221)(140,222)(141,177)(142,178)(143,179)(144,180)(145,181)(146,182)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)(153,175)(154,176)(155,207)(156,208)(157,209)(158,210)(159,197)(160,198)(161,199)(162,200)(163,201)(164,202)(165,203)(166,204)(167,205)(168,206), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,87,214,155)(2,206,215,58)(3,85,216,167)(4,204,217,70)(5,97,218,165)(6,202,219,68)(7,95,220,163)(8,200,221,66)(9,93,222,161)(10,198,223,64)(11,91,224,159)(12,210,211,62)(13,89,212,157)(14,208,213,60)(15,154,115,105)(16,83,116,175)(17,152,117,103)(18,81,118,173)(19,150,119,101)(20,79,120,171)(21,148,121,99)(22,77,122,169)(23,146,123,111)(24,75,124,181)(25,144,125,109)(26,73,126,179)(27,142,113,107)(28,71,114,177)(29,180,192,74)(30,108,193,143)(31,178,194,72)(32,106,195,141)(33,176,196,84)(34,104,183,153)(35,174,184,82)(36,102,185,151)(37,172,186,80)(38,100,187,149)(39,170,188,78)(40,112,189,147)(41,182,190,76)(42,110,191,145)(43,67,138,201)(44,162,139,94)(45,65,140,199)(46,160,127,92)(47,63,128,197)(48,158,129,90)(49,61,130,209)(50,156,131,88)(51,59,132,207)(52,168,133,86)(53,57,134,205)(54,166,135,98)(55,69,136,203)(56,164,137,96) );
G=PermutationGroup([[(2,52),(4,54),(6,56),(8,44),(10,46),(12,48),(14,50),(16,34),(18,36),(20,38),(22,40),(24,42),(26,30),(28,32),(57,178),(58,143),(59,180),(60,145),(61,182),(62,147),(63,170),(64,149),(65,172),(66,151),(67,174),(68,153),(69,176),(70,141),(71,166),(72,205),(73,168),(74,207),(75,156),(76,209),(77,158),(78,197),(79,160),(80,199),(81,162),(82,201),(83,164),(84,203),(85,142),(86,179),(87,144),(88,181),(89,146),(90,169),(91,148),(92,171),(93,150),(94,173),(95,152),(96,175),(97,154),(98,177),(99,159),(100,198),(101,161),(102,200),(103,163),(104,202),(105,165),(106,204),(107,167),(108,206),(109,155),(110,208),(111,157),(112,210),(114,195),(116,183),(118,185),(120,187),(122,189),(124,191),(126,193),(127,223),(129,211),(131,213),(133,215),(135,217),(137,219),(139,221)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,55),(16,56),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(57,142),(58,143),(59,144),(60,145),(61,146),(62,147),(63,148),(64,149),(65,150),(66,151),(67,152),(68,153),(69,154),(70,141),(71,166),(72,167),(73,168),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162),(82,163),(83,164),(84,165),(85,178),(86,179),(87,180),(88,181),(89,182),(90,169),(91,170),(92,171),(93,172),(94,173),(95,174),(96,175),(97,176),(98,177),(99,197),(100,198),(101,199),(102,200),(103,201),(104,202),(105,203),(106,204),(107,205),(108,206),(109,207),(110,208),(111,209),(112,210),(113,134),(114,135),(115,136),(116,137),(117,138),(118,139),(119,140),(120,127),(121,128),(122,129),(123,130),(124,131),(125,132),(126,133),(183,219),(184,220),(185,221),(186,222),(187,223),(188,224),(189,211),(190,212),(191,213),(192,214),(193,215),(194,216),(195,217),(196,218)], [(1,132),(2,133),(3,134),(4,135),(5,136),(6,137),(7,138),(8,139),(9,140),(10,127),(11,128),(12,129),(13,130),(14,131),(15,196),(16,183),(17,184),(18,185),(19,186),(20,187),(21,188),(22,189),(23,190),(24,191),(25,192),(26,193),(27,194),(28,195),(29,125),(30,126),(31,113),(32,114),(33,115),(34,116),(35,117),(36,118),(37,119),(38,120),(39,121),(40,122),(41,123),(42,124),(43,220),(44,221),(45,222),(46,223),(47,224),(48,211),(49,212),(50,213),(51,214),(52,215),(53,216),(54,217),(55,218),(56,219),(57,167),(58,168),(59,155),(60,156),(61,157),(62,158),(63,159),(64,160),(65,161),(66,162),(67,163),(68,164),(69,165),(70,166),(71,141),(72,142),(73,143),(74,144),(75,145),(76,146),(77,147),(78,148),(79,149),(80,150),(81,151),(82,152),(83,153),(84,154),(85,205),(86,206),(87,207),(88,208),(89,209),(90,210),(91,197),(92,198),(93,199),(94,200),(95,201),(96,202),(97,203),(98,204),(99,170),(100,171),(101,172),(102,173),(103,174),(104,175),(105,176),(106,177),(107,178),(108,179),(109,180),(110,181),(111,182),(112,169)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,43),(8,44),(9,45),(10,46),(11,47),(12,48),(13,49),(14,50),(15,33),(16,34),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,29),(26,30),(27,31),(28,32),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,106),(72,107),(73,108),(74,109),(75,110),(76,111),(77,112),(78,99),(79,100),(80,101),(81,102),(82,103),(83,104),(84,105),(113,194),(114,195),(115,196),(116,183),(117,184),(118,185),(119,186),(120,187),(121,188),(122,189),(123,190),(124,191),(125,192),(126,193),(127,223),(128,224),(129,211),(130,212),(131,213),(132,214),(133,215),(134,216),(135,217),(136,218),(137,219),(138,220),(139,221),(140,222),(141,177),(142,178),(143,179),(144,180),(145,181),(146,182),(147,169),(148,170),(149,171),(150,172),(151,173),(152,174),(153,175),(154,176),(155,207),(156,208),(157,209),(158,210),(159,197),(160,198),(161,199),(162,200),(163,201),(164,202),(165,203),(166,204),(167,205),(168,206)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,87,214,155),(2,206,215,58),(3,85,216,167),(4,204,217,70),(5,97,218,165),(6,202,219,68),(7,95,220,163),(8,200,221,66),(9,93,222,161),(10,198,223,64),(11,91,224,159),(12,210,211,62),(13,89,212,157),(14,208,213,60),(15,154,115,105),(16,83,116,175),(17,152,117,103),(18,81,118,173),(19,150,119,101),(20,79,120,171),(21,148,121,99),(22,77,122,169),(23,146,123,111),(24,75,124,181),(25,144,125,109),(26,73,126,179),(27,142,113,107),(28,71,114,177),(29,180,192,74),(30,108,193,143),(31,178,194,72),(32,106,195,141),(33,176,196,84),(34,104,183,153),(35,174,184,82),(36,102,185,151),(37,172,186,80),(38,100,187,149),(39,170,188,78),(40,112,189,147),(41,182,190,76),(42,110,191,145),(43,67,138,201),(44,162,139,94),(45,65,140,199),(46,160,127,92),(47,63,128,197),(48,158,129,90),(49,61,130,209),(50,156,131,88),(51,59,132,207),(52,168,133,86),(53,57,134,205),(54,166,135,98),(55,69,136,203),(56,164,137,96)]])
82 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | ··· | 4J | 7A | 7B | 7C | 14A | ··· | 14U | 14V | ··· | 14AS | 28A | ··· | 28L |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
82 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D7 | C4○D4 | D14 | D14 | C7⋊D4 | C7⋊D4 | D4×D7 | D4⋊2D7 |
kernel | C24.20D14 | C14.C42 | C2×Dic7⋊C4 | C2×C23.D7 | D4×C2×C14 | C2×Dic7 | C2×C28 | C22×C14 | C22×D4 | C2×C14 | C22×C4 | C24 | C2×C4 | C23 | C22 | C22 |
# reps | 1 | 1 | 1 | 4 | 1 | 2 | 2 | 4 | 3 | 6 | 3 | 6 | 12 | 24 | 3 | 9 |
Matrix representation of C24.20D14 ►in GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
3 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 25 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
24 | 0 | 0 | 0 | 0 | 0 |
16 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 25 | 14 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 5 |
0 | 0 | 0 | 0 | 15 | 19 |
1 | 9 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 4 | 0 | 0 |
0 | 0 | 16 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 7 | 25 |
G:=sub<GL(6,GF(29))| [1,3,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,25,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[24,16,0,0,0,0,0,23,0,0,0,0,0,0,25,1,0,0,0,0,14,4,0,0,0,0,0,0,10,15,0,0,0,0,5,19],[1,0,0,0,0,0,9,28,0,0,0,0,0,0,14,16,0,0,0,0,4,15,0,0,0,0,0,0,4,7,0,0,0,0,2,25] >;
C24.20D14 in GAP, Magma, Sage, TeX
C_2^4._{20}D_{14}
% in TeX
G:=Group("C2^4.20D14");
// GroupNames label
G:=SmallGroup(448,756);
// by ID
G=gap.SmallGroup(448,756);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,253,254,387,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^14=1,f^2=d*c=c*d,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^-1>;
// generators/relations